
c L -. . ," . : -_ , t .% * .- * F .'~e

REAr INSTFUCTIONS
REPORT DOCUMENTATION PAGE BEFORE CDr) LETING F'jPM

I ,0Q NMe
Q

2 GOVT ACCESSION NO I RECIPIENT'S CATALOG NUMIER

AIM 1227

4 TITLE fend SbflIJ.) S TYPE OF REPORT & PERIaO COVEREO

The Behavior Language; User's Guide memorandum

AUT.OQ~j)
PERFORMING ORG. REPORT NUMBER

A~U Oqha) t l.,.J" 6. CONTRACT OR GRANT NUMUER(I)

0 Rodney Brooks U N00014-86-K-0685
eoN00014-85-K-0124

PERrORM-4NC R . ANZA7rZN NAME ANO ADDRESS 10 PR:GG.RAM ELEUENr PRO .jrC TASK

Artificai lntelligence Laboratory ARIA A WORK UNIT NUMBERS

5-45 Technology Square

CCambridge, MA 02139
CONTROLLING OFFICE NAME ANO ADDRESS It. REPORT DATE

Advanced Research Projects Agency April 1990
1400 Wilson Blvd. IS. NUMSEROF PAGES

Arlington, VA 22209 35
t MONITORING AGENCY NAME A ADDRESS(II different from C eetulOlind 0111c) IS. SECURITY CLASS. lot thie tiopf)

Office of Naval Research UNCLASSIFIED

Information Systems

Arlington, VA 22217 Is. OCCLASSIICATION/OOWNGRAOING

I. OISTRIBUTION STATEMEtMT (@1 thl Reporf)

Distribution is unlimited

17. OISTRIEJTION STATEMENT (of tH. abstract oefred in Block 20, II dilfrefU from p et)

It, 1UPPLEMENTARY NOTES

None

IS. KEY WORDS (Conlinue on rewcrse aide II necessary OW idciintil by block number)

subsumption

behavior language

20. AUSTRACT (C.ctllnuc . 4o14~6 e I flO66040d7 ld Idaen"ftF by block mber)

The Behavior Language is a rule-based real-time parallel robot program-
ming language originally based on ideas from [Brooks 86], [Connell 89],
and [Maes 891. It compiles into a modified and extended version of the sub-
sumption architecture [Brooks 861 and thus has backends for a number of

processors including the Motorola 68000 and 68HC11, the Hitachi 6301, and
(continued on back)

DID 7) 1473 too, oF I NOV0 S , ohSOLET UNCLASS I IF ED
S/H 0'02-014"6601 1

SECURITY CLASSIFICATION OF THIS PAGE (V),c Deto Ifl, ere

Block 20 continued:

Common Lisp. Behaviors are groups of rules which are activatable by a number
of different schemes. There are no shared data structures across behaviors, but
instead all communication is by explicit message passing. All rules are assumed
to run in parallel and asynchronously. It includes the earlier notions of inhi-
bition and suppression, along with a number of mechanisms for spreading of
activation.

3-

T/

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo 1227 April, 1990

The Behavior Language; User's Guide*

Rodney A. Brooks

Abstract

The Behavior Language is a rule-based real-time paral!el rcbot program-
ming language originally based on ideas from [Brooks 86], [Connell 89],
and [Maes 891. It compiles into a modified and extended version of the sub-
sumption architecture [Brooks 861 and thus has backends for a number of
processors including the Motorola 68000 and 68HC11, the Hitachi 6301, and
Common Lisp. Behaviors are groups of rules which are activatable by a number
of different schemes. There are no shared data structures across behaviors, but
instead all communication is by explicit message passing. All rules are assumed
to run in parallel and asynchronously. It includes the earlier notions of inhi-
bition and suppression, along with a number of mechanisms for spreading of
activation./(.

*Support for this research was provided in part by the University Research Initative under Office
of Naval Research contract N00014-86-K-0685, in part by the Advanced Research Projects Agency
under Office of Naval Research contract N00014-85-K-0124 and in part by a gift from Siemens.

1 INTRODUCTION

1 Introduction

The subsumption architecture was described initially in [Brooks 86] and later mod-
ified in [Brooks 89] and [Connell 89]. The subsumption compiler compiles aug-
mented finite state machine (AFSM) descriptions into a special purpose scheduler to
simu!ate parallelism and a set of finite state machine simulation routines. This is a
dynamically retargettable compiler that has backends already for a number of pro-
cessors, including the 68000, the 68HC11, and the 6301. The subsumption compiler
takes a source file as input, and depending on the target machine either produces an
assembly source file or an incore data structure that can be assembled by some other
assembler.

The behavior language was inspired by [Maes 89] as a way of grouping AFSMs
into more manageable units with the capability for whole units being selectively acti-
vated or de-activated. In fact, AFSMs are not speficied directly, but rather rule sets
of real-time rules compile into AFSMs in a one-to-one manner. Sharing of registers
and monostables within the AFSMs produced by a single rule set, or behavior, is the
norm. The behavior compiler is machine independent and compiles into an interme-
diate file of subsumption AFSM specifications. The subsumption compiler can then
be used to compile to the various targets. Some enhancements were made to the
original subsumption language in order to support the behavior language.

The behavior language is sometimes referred to as the new subsumption. A be-
havior language program appears as groupings of real-time rules, which are written
in a subset of Lisp, and which run in parallel.

All code for the behavior and subsumption compilers was written in Common
Lisp.

2 The User Interface

There are three forms for interacting with the behavior compiler at Lisp top level.
These specify the target machine, invoke the behavior compiler, and invoke the sub-
sumption compiler respectively.

2.1 Specification

*** (set-current-machine machine)

2 THE USER INTERFACE 3

Sets the target machine for the subsumption compiler. If there is a Lisp resident
retargettable assembler it also makes the assembler's target this machine. The argu-
ment machine must be a symbol naming a machine. Currently supported machines
include

68k The 68000, running SOS (Seymour Operating System).

h6301 The Hitachi 6301. The operating system must be provided by the user as an
assembler macro in this case.

m68hcll The Motorola 68HC11. The operating system is provided as an assembler
macro in this case.

clsim Common Lisp. This produces a file of Common Lisp source code that can be
compiled by a regular Lisp compiler.

A current machine must be set before the subsumption compiler can be invoked.

*** (behave file &key subcompile listing target)
Invokes the behavior compiler. The file name defaults to the current directory and an

extension of beh. For instance: test. beh can be specified with a file name argument
of test. The output file then defaults (and there is no way to change the default) to
an extension of lisp. So in the previous example the output file would be test. lisp.
The subcompile argument is just a flag. If nil, it says to terminate after behavior
compiling. If non-nil it says to pass on to the subsumption compiler. In that case the
listing and target arguments are passed onto the subsumption compiler. Otherwise
they are ignored.

*** (subcompile file &key listing target)
Invokes the subsumption compiler. The file name defaults to the current directory

and an extension of lisp. For instance: test. lisp can be specified with a file name
argument of test. The output may be another file with a different extension, or an
incore assembly language program, depending on the target machine. For the 68000,
an assembly source program is written into a file with extension asm (e.g., test. asm).
For the 6301 and 68hcll the result is an incore assembly object. A symbol whose
print name matches the file name main part (e.g., TEST in our example) is created
and is bound to this assembly object. In this case the symbol is returned as the result
of the procedure call. For Lisp, a file with extension clisp is produced.

2 THE USER INTERFACE 4

The listing keyword, when non-nil, says to create an assembler listing file that
contains compiler comments1 . In the case of the 68000, this means that a normal asm
file is produced but now comments are included. This option slows the subsumption
compiler down by a factor of two but can be very useful for debugging. !n thc case
of machines which don't normally produce an assembly file, the listing argument can
force the production of one. If listing is T, then the file name with an extension of
txt is used. Otherwise listing can be a file name itself which will be used directly.

The target keyword lets you specify a target machine without having to explicitly
set it. If this argument is supplied then a call to set-current-machine is done
globally, changing the target.

2.2 Examples

In the following two example interactions, exactly the same effects are achieved. In
each case the 68000 is chosen as the target machine. The source file cmor; seymour. beh
is compiled into the intermediate file cmor;seymour. lisp. Then an assembly lan-
guage compilation of that is produced, with comments, in the file cmor ; seymour. asm.

? (set-current-machine 168k)
68K
? (behave "cmor;seymour")

Behavior compiler.
Processing: cmor; seymour.beh

Processing: cmor;base.beh
Processing: cmor;basemon.beh
Processing: cmor;linc.beh

Outputting to: cmor;seymour.lisp

Generated 24 afsms and 11 wire trees.

29 event-dispatches and 36 dispatch clauses.

T

'These are comments generated by the compiler explaining what it is doing-they can help an
experienced user.

2 THE USER INTERFACE 5

? (subcompile "cmor;seymour" :listing t)

Subsumption compiler. Target: 68K
Processing: cmor;seymour.lisp
Uutputting to: cmor;seymour.asm

#. (pathname "cmor;seymourasm")

The file seymour includes references to three other files, which is why they are
shown getting recursively processed.

The same results can be attained with a single call to behave as below.

? (behave "cmor;seymour" :listing t :target '68k :subcompile t)

Behavior compiler.
Processing: cmor; seymour.beh

Processing: cmor;base.beh
Processing: cmor;basemon.beh
Processing: cmor;linc.beh

Outputting to: cmor;seymour.lisp

Generated 24 afsms and 11 wire trees.

29 event-dispatches and 36 dispatch clauses.

Subsumption compiler. Target: 68K
Processing: cmor; seymour. lisp
Outputting to: cmor;seymour.asm

T
?

In the two examples above, the assembler code was annotated with compiler com-
ments. Here is an example of two pieces produced in the above runs.

2 THE USER INTERFACE 6

* AFSM171:S178 must be suspended
* test event AFSM171:(DELAY 0.2)

move.l d7,d6 ;pick up system clock
sub.l regs-24(a.6),d6 ;compare to time suspended
cmpi.l #200,d6 ;check (delay 0.2)
blt.s endmod277

di spat ch279
clr.l regs-24(a6) ;unsuspend AFSH171:S178
bsr afsml7..s179 ;dispatch

endniod277

afsm17l-s179
clr.b .3C-.tcurrmax(a6) ;primop: CLEAR-BASE-STATUS
clr .b .BC-.rcurrmax(a6) ;primop: CLEAR-BASE-STATUS

afsm17i..s180

tst.b regs+7(a6) ;primop: <
ble.s afsm17l..s182

afsm171-.s181
moveq #-5,d2 ;stash output HEADING in temporary location
or.w #256,d2 ;set up message arrived flag from HEADING
move.w d2,regs+18(a6) ; deliver to AFSM188:HEADING

The same code when the listing argument is nil looks like:

move.l d7,d6
sub.l regs-24(a6) ,d6
cmpi.l #200,d6
blt.s enduaod277

dispatch.279
clr.l regs-24(a6)
bsr afsm17I-s179

endmod277

afsm171-s179
clr .b ...BCtcurrmax(a6)
lr .b ..BC-.rcurrmax(a6)

3 THE BEHAVIOR LANGUAGE 7

afsm17 i_ s 180
tst.b regs+7(a6)
ble. s afsm171_s182

afsm171_s181
moveq #-5,d2

or.w #256,d2

move.v d2,regs+18(a6)

3 The Behavior Language

Real-time rules are the key to the behavior language. They can be isolated or grouped
into behaviors.

The rules manipulate constants and variable quantities held in registers-usually
no more than 8 bits wide.

There are monostables that can be triggered and monitored.
Once a real-time condition is met, some small amount of Lisp-like code gets acti-

vated. There are a number of special forms in the behavior language. Their semantics
are detailed below, along with the form that expressions can take. There is no notion
of procedure definition-all abstraction must be done in macros, rules or behaviors.

At the same time, for complex new robots it is usally necessary to define some
new interfaces. This is the role of primops. See section 10 for details.

In most cases the subset of Lisp defined below is downward compatible with
Common Lisp.

It is worth noting that programs using real-time rules and calling fragments of
Lisp code as defined below have run on processors with as little as 128 bytes of RAM.

3.1 Expressions

Expressions use usual Common Lisp syntax.
An expression is either an arithmetic expression or the application of a predicate to

zero or more arithmetic expressions. A predicate is one type of primitive procedure-
the type that returns true/false.

An arithmetic expression can be a constant (although it does not have to be an
arithmetic constant-it could be a string or a keyword for example), or a primitive
procedure applied to zero or more arithmetic expressions. In this case, the primitve

3 THE BEHAVIOR LANGUAGE

procedure must return a number (typically in the range [-128, 127J; 8 bits signed).
Sometimes it is not defined which such number they will return.

Primitive procedures (or primops) are defined in implementation specific ways by
the use of code templates. The actual primitive procedures defined may vary between
implementations.

At the very least, one can expect every implementation to include: +, -, max.
min, =, /, <, >, <=, >=, etc. Individual implementations will document the available
primitives in separate documents.

3.2 Logical Expressions

Logical expressions are used as tests in conditional branches. Logical expressions can
be either:

" a monostable

" a predicate applied to argument expressions

" (NOT logical-expression)

" (AND &rest logical-expressions)

" (OR &rest logical-expressions)

3.3 Special Forms

A special form is a structure used for flow of control. A special form's evaluation
usually includes one or more expression evaluations at some recursive level.

The valid special forms in the behavior language are as follows. Note carefully
the places which are referred to as expressions. These really must be expressions
as defined in the previous subsection. Otherwise subforms can generally be either
expressions or special forms.

*** (if test then &optional else)

This is much like the Common Lisp if. The only restriction is that test must be a
logical expression.

*** (cond &rest cond-clauses)

3 THE BEHAVIOR LANGUAGE 9

Again, this is like the Common Lisp cond. Each clause has the form

(test &trest consequents)

where test must be a logical expression (or the special expression t) and the conse-

quents can be anything.

*** (repeat (variable range) &rest bodyforms)
This is an iteration construct. range must be an expression which evaluates to a

positive integer no bigger than 127. The variable (it can be named nil if it is not

referred to in the bodyforms) is bound to the range value minus one, then stepped

down by one to zero. At each bind, (including zero) the bodyforms are evaluated. The

bodyforms can make reference to the variable and get the variable's current binding

at all times.

*** (sequence &rest forms)
This is identical to the Common Lisp progn. I.e., it provides a sequence construct-

hence the name.

*** (nothing)
Does nothing. Useful as a place holder sometimes.

*** (let bindings &rest bodyforms)

Just like Common Lisp let. Each variable binding has the form:

(varname valexpression)

where valexpresston must be an expression.

*** (let* bindings &rest bodyforms)
Just like Common Lisp let*. Each variable binding has the form:

(varname valexpression)

where valexpression must be an expression.

*** (setf varname expression)

4 SPECIFYING AFSMS 10

This is much like the Common Lisp setf, or more precisely setq. It sets the value
of varname to the result of evaluating the expression.

*** (trigger monostable)
Triggers the monostable named monostable. The monostable must have a time period
declared elsewhere. Triggering an already triggered monostable simply elongates the
time the monostable is "on" for its full time period from the moment the monostable
is most recently triggered.

*** (output portname expression)
This evaluates the expression and sends it to the named output port, portnarne.

Depending on the context, there is more than one possible meaning for output port.
Multiple meanings are explained below, in the section on sharing.

*** (send portspec expression)
This is like output, but one specific input port on another entity is named, and the

message is sent directly there. This is not such good programming style, as it lets
destinations rct buried deep inside user code, where a casual observer might miss
them. Maybe this should be flushed.

Besides these special forms, whenever and exclusive can also be seen as special
forms when they are not at the top level of a process specification.

4 Specifying AFSMs

An AFSM is built for every toplevel real-time rule seen by the behavior compiler. We
will specify the meaning of toplevel later, but for now it suffices to include the case
of typing a real-time rule as a toplevel s-expression in the input file-i.e. one that is
not enclosed in any extra parentheses (list structure).

There are two ways of specifying a real-time rule.

* As a whenever form.

" As an exclusive form.

The computational model is that for each rule, a single computational process is
devoted full time to evaluating it.

4 SPECIFYING AFSMS 11

4.1 Rule Syntax; whenever

The most common way to specify a rule, and hence an AFSM is as a whenever clause.
The general syntax is:

*** (whenever condition &rest body-forms)

The semantics of this are that a computational process will be devoted full time
to executing this rule. The process starts in a wait state. Whenever the triggering
condition becomes truc, the list of body-forms are evaluated sequentially. Then the
process returns to the wait state until the condition again becomes true. It is legal
for the process to get stuck forever in the body-this can easily happen if there are
recursive whenever forms, but see below for details.

There are a number of possibilities for the form of a whenever condition. We list
them below.

t This says that every certain amount of time, the body of the whenever form will
be unconditionally evaluated. The certain amount of time here, is often re-
ferred to as the characteristic time of a particular implementation of the behav-
ior/subsumption system. On all our processors so far, this time has been 0.04
seconds giving a fundamental frequency to the system of 25Hz. 2

monostable The condition is true for the duration of the triggering of the named
monostable.

(not monostable) The condition is true only while the monostable is not triggered.

(delay r) This is like the case of t above, but now any explicit time period r can
be used to set the frequency of evaluating the body. It should be expressed in
units of seconds.

(received? register) This is true if a message has been deposited in the named
register since the start of waiting in this whenever clause.

(and or &rest forms) This is true if the logical and or or of the remaining forms are
true. The remaining forms can be any of:

2At compile time the Lisp variable *characteristic-time* contains the characteristic time.

4 SPECIFYING AFSMS 12

" monostable

* (not monostable)

" (delay r)

" (received? register)

predicate-form Such an arbitrary lisp predicate (except that it cannot be an and, or,
or not form as that would make it ambigous with the case above) is evaluated
repetitively at a repeat rate determined by the characteristic time of the imple-
mentation. Whenever the predicate-form is true, the body-forms are evaluated.
In essence, using a predicate-form is identikal to having used:

(whenever t (if predicate-form (sequence . body-forms)))

4.1.1 Changing the characteristic time

For any particular whenever condition, the characteristic time can be changed by
wrapping it in a with-time form. The syntax is

(with-time period whenever-condition)

The semantics are simply that the whenever-condition is evaluated with a char-
acteristic time specified by the time period.

4.1.2 Non-local exits

It is legal to have a whenever form (or exclusive form) wherever a special form is
allowed. Thus for instance, one might write the following code to make the physical
status of a door correspond to the current state of an internal variable.

(defconstant $open 0)
(defconstant $closed 1)

(whenever (= message $open)
(open-the-door)
(whenever (- message $closed)

(close-the-door)))

4 SPECIFYING AFSMS 13

There is a problem here however, as once the inner whenever is entered, there
is no way to exit it. The inner whenever will continually check its condition and
perhaps repeatedly initiate the door closing action. In order to break out of such
inner whenever forms, there is a form named done-whenever. For instance:

(whenever (= message $open)
(open-the-door)
(whenever (= message $closed)

(close-the-door)
(done-whenever)))

In this case, as soon as the door closing action is initiated, the computational
process running this rule reverts to checking the outer condition. Thus, both the
door opening and the door closing actions only get initiated once for each change in
state of the message variable.

The syntax of the form is:

*** (done-whenever &optional (height 0))

When the optional height argument (which defaults to 0) is 0, it means simply to
exit the lexically most recent whenever. For larger values, it means to exit successively
less lexically recent whenever forms, each lexical layer traversed decremementing the
height by one. E.g.:

(whenever (received? messl)
(whenever (received? mess2)

(whenever (received? mess3)
(print "Got 1, 2, and 3 sequentially")
(done-whenever 1))))

In this example, the process waits for a sequence of messages to arrive in registers
messl, mess2, and mess3, and as soon as the process gets the third it prints the
message, then reverts to waiting for a message in register messi. Note that other
messages may arrive in the meantime and they are ignored-thus the process will
respond to a sequence like 1, 2, 2, 1, 3 for instance.

5 BEHAVIORS, MACHINES, ETC. 14

4.2 Rule Syntax; exclusive

An exclusive rule provides a way to simultaneously monitor many conditions and
then exclusively service the first one that occurs, ignoring any of the other conditions
which might happen during that servicing.

The general syntax is:

*** (exclusive &rest whenever-forms)

where whenever-forms is a collection of whenever rules.
The model is that there is a computational process assigned full time to this

exclusive rule. This process monitors all the whenever conditions simultaneously,
and as soon as the first condition happens, the process devotes all its attention to
evaluating that whenever's body, temporarily ignoring the other whenever conditions.
As soon as the body is exited, the process goes back to monitoring all the parallel
conditions anew.

The following example distinguishes between messages arriving in an isolated way
in the bar register, from those that arrive less than or equal to two seconds after a
message arrives in register foo.

(exclusive
(whenever (received? bar) (print "Isolated BAR"))
(whenever (received? foo)

(exclusive
(whenever (received? bar)

(print "BAR received within two seconds of F00"))
(whenever (delay 2.0) (done-whenever 0)))))

Note that if it is ever the case that more than one of the whenever conditions
becomes true simultaneously, then the leftmost one lexically is the one that is chosen.

5 Behaviors, Machines, etc.

Real-time rules can appear as top-level lisp forms in a source file. As such, they get
compiled into single AFSMs, with no user-visible name. Such rules cannot be referred
to in order to connect virtual wires to their inputs or outputs. Furthermore, such

5 BEHAVIORS, MACHINES, ETC. 15

real-time rules are lexically closed. Any registers these rules refer to are purely local.
It is impossible to refer to any monostables as there is no syntax for declaring the
monostables' activation time periods within the rules. Therefore, isolated real-time
rules at top level are of rather limited value, although they are sometimes useful to
initiate background housekeeping processes.

5.1 Single Named Rules

A slightly more useful way of specifying an isolated real-time rule is by giving it a
name with defmachine. The syntax is:

•** (defmachine name declarations rule)

The name becomes the name of a single AFSM which implements the rule speci-
fied. The declarations slot lets the user specify monostable periods and initial values
for registers. The declaration syntax is delineated below.

5.1.1 Registers

Registers as such and output ports are not necessarily declared in the behavior lan-
guage. Rather their existence can be inferred from seeing references to them. Output
port names can be identified syntactically by appearing in an output statement. All
free references to variables must be either registers or monostables. Monostables must
have their time period declared somewhere so they can be disambiguated from regular
registers.

Given the name of the AFSM declared in the defmachine construct and the
implicit output names and inferred register names, the connect form described later
in this document can be used to connect individual inputs and outputs in so defined
augmented finite state machines.

5.1.2 Declaration syntax

The declarations slot of a def machine is simply a list of declarations. There are three
forms declarations can take:

* (name : init value) which both declares name to be a register and gives it an
initial value.

5 BEHAVIORS, MACHINES, ETC. 16

" (name :monostable period) which declares name to be a monostable and de-
clares its activation period.

" (name :additive (l h)) which says that all incoming messages to this register
should be added and the sum should be bounded in the range [1, h). No overflow
checking of intermediate values is done in these computations, although the
bounding computation is done after each message is sent to such a register.
For instance consider a machine using 8 bit signed arithemetic with an additive
register with the range (0 120). Suppose its value is 120 and a message of 15
arrives. The sum will be 135 which overflows the capacity of an 8 bit machine,
and this will confuse the max instruction done. Thus, users must beware of the
possible size of the arguments that will be added.

Any register not declared by an :nit has an initial value that is undefined.
Multiple declarations on a single register can simply be appended as a set of

keywords and values.

5.2 Collections of Rules: Behaviors

Collections of real-time rules can be grouped into behaviors. There are a number of
advantages to such grouping:

1. Registers, monostables and outputs can be shared across many real-time rules.

2. Behaviors provide a coarse scale abstraction barrier which even strong tempta-
tion cannot broach.

3. Fewer names are needed in the name space.

4. Complete sets of rules (i.e., behaviors) can be activated through multiple acti-
vation mechanisms.

There are two ways to specify behaviors; with def interface and with defbehavior.
For now we will consider these two forms to be indentical. Later we will distinguish
them.

The form of a behavior specification is:

***~ (defbehavior name &key inputs outputs decls processes)

5 BEHAVIORS, MACHINES, ETC. 17

or equivalently

* (def interface name &key inputs outputs decls processes)

The arguments are as follows:

name The name of the behavior.

.nputs A list of registers which are available as inputs from outside the behavior.

outputs A list of output ports which can be connected to external entities.

decls A list of declarations having the same syntax as those in defmachine.

processes A list of real-time rules, having the same syntax as those described earlier.
These rules can be expressed as whenever, exclusive, or even defmachine
statements. In the latter case the rule has a somewhat useless name.

As with single-rule machines, any undeclared free variable in a behavior descrip-
tion is assumed to be a register. Any name appearing in an output statement is
assumed to be an output. However, unless a name appears in the outputs specifica-
tion list, it cannot be exported from the behavior. If the name also appears elsewhere
as a free variable, it is given dual treatment described below and handled as a register
also.

5.2.1 Sharing within behaviors

All registers and monostables, with the exception of those that also appear on the
input list, or as output names somewhere within a rule, are shared across all the
AFSMs generated for the behavior. We will treat registers which appear as outputs
separately in the next section.

Consider the following example behavior:

(defbehavior tester
:inputs (fl f2)
:decls ((total :init 0))
:processes ((whenever (received? fl)

5 BEHAVIORS, MACHINES, ETC. 18

(setf total (+ total f)))
(whenever (received? f2)

(setf total (- total f2)))))

Here the register total is shared between two AFSMs, one of which increments
it, while the other decrements it.

Likewise, monostables can be shared between rules, and when one rule triggers a
monostable the other rule will see it as having been triggered.

When two rules in the same behavior refer to a name they are referring to the
same entity.

There are two exceptions to this sharing concept; registers that are named explic-
itly as inputs and registers which accept internal sends. The latter case is discussed
in the next subsection. Registers that are named explicity as inputs are replicated
in each AFSM where they are referenced. This is so that the (received? ...) con-
struct will work in each rule independently. Thus, different rules within a behavior
will refer to different copies, and the values will diverge if one rule includes a setf of
the appropriate name.

5.2.2 Message passing within behaviors

It is possible to pass messages between rules within a single behavior. This mechanism
was referred to above has having internal sends.

If there is an output to a port name that is the same name as is used in syntactic
positions reserved for registers, then such output messages are sent to each copy of
that register-one copy for each real-time rule that refers to it. It is not necessary
in this case that the port name also appear as a declared output of the behavior,
although it may, and in that case all messages are also sent out along any virtual
wires connected to that port.

The reason for having internal message passing rather than just shared registers,
is to enable synchronization between rules-that is exactly what happens when one
rule is waiting to trigger on a received? clause when a message from another rule
arrives.

5.2.3 Behaviors and interfaces

There are two differences between behaviors and interfaces (specified with def behavior
and def interface respectively).

6 CONNECTIONS 19

The primary intent of the differentiation is that interfaces should implement vir-
tual sensors and actuators.

Note that this is different from saying that interfaces are used to differentiate
central from peripheral systems. Any sensor is a virtual sensor at some level-the
time taken for a sonar return to arrive is represented on one particular wire as a direct
physical analog by the time taken for a voltage to go high, whereas a little further
down the processing line the analogy is stretched a little as it becomes data on a
16 element wide binary bus. Interfaces in the behavior language simply push that
abstraction another step until the sensor readings and actuator commands become
virtual at the level of appearing as messages on connections between sets of real-time
rules. There is no necessary sense here in which perception becomes peripheral to
the central system. Perception still may be done in and at the behest of behaviors.
The distinction between interfaces and behaviors is that behaviors deal only with
messages on connections and internal state.

The implementation of this primary intent is through enforcement of the primitive
procedures that may be used in rule sets specified with defbehavior. Certain prim-
itives are designated as communicating, either from sensors or to actuators, outside
the realm of behavior language entities. Their use is forbidden except in interfaces.

A secondary, and indeed subsidiary, intent is that behaviors but not interfaces can
be activated and deactivated as complete units. There are two schemes for such be-
havior control, described below in the activation section. These schemes are accessed
by additional keywords to def behavior that are not legal for def interf ace.

6 Connections

The method for connecting isolated AFSMs and behaviors together is the connect
form. Isolated AFSMs and complete behaviors can be mixed and matched within such
declarations of virtual wires. Isolated AFSMs and behaviors are treated equivalently.

A source or destination of a wire is written as a port identifier. The general form
for such a thing is:

(objectname portname)

where objectname is the name of either an explicitly constructed isolated AFSM, or
the name of a behavior. The portname is either an implicit register or output in the
case of an AFSM specified with defmachine, or in the case of a behavior it is an
explicitly declared input or output.

6 CONNECTIONS 20

6.1 Explicit Wires

The general form for explicit connection is:

*** (connect source destl &rest more-dests)

This says that for every output at the source port, a copy will be delivered to
every destination specified as destl or in the list more-dests. If a destination port
name is part of a behavior, then a copy of the message gets delivered to every rule or
explicit AFSM that references the named input.

Connects can also be used to implement suppression and inhibition. In this case
the destination is either

((suppress input-port))

or
((inhibit output-port))

or
((default input-port))

In each case input-port and output-port take the form of port identifiers decribed
earlier.

The sematics of suppression are that the new connection sends its messages to the
old input-port. When such a message is sent, it completely blocks any messages for
the old port from other sources for some time period-twice the characteristic time
of the implementation.

The semantics of inhibition are that the new connection inhibits any outputs
getting out of the old output-port for some time period after an inhibiting message is
sent. That time period is again twice the characteristic time of the implementation.

The semantics of default are just like those for suppression, except that it is the
old wire that has dominance over the new wire.

6.2 Implicit Wires

Wires can be implicitly built into a rule specification, by using the send special form.
It looks like:

*** (send destination value)

7 MACROS OF ALL FLAVORS 21

In this case no declared output is used. In fact, this syntax is internally used to
transform the source behavior so that it has an explicit new output port name. The
send form is transformed into a syntactically identical output form, and an explicit
connect form is added.

Thus:

(defbehavior foo
:processes ((whenever (with-time 1.0 t)

(if (check-clock)

(output bar 33)))))

(connect (foo bar) (some place))

is completely equivalent to:

(defbehavior foo
:processes ((whenever (with-time 1.0 t)

(if (check-clock)
(send (some place) 33)))))

7 Macros of All Flavors

Common Lisp-like macros can be defined at the top level of a file by using defmacro.
Such definitions are actually treated using the underlying Common Lisp mechanism
so all the syntax and semantics of Common Lisp apply.

Macros can be used anywhere within the behavior language. They will be ex-
panded appropriately. They can, of course, expand into other macro calls and all will
be handled appropriately. Note however, that only macros which occur within be-
havior language source files will be expanded. Any lisp macro which already happens
to be in the environment will be ignored.

7.1 Top Level Macros

It may be convenient to have a top level macro return many items, for instance a
couple of behaviors and some connections between them. To enable this to happen,

8 ACTIVATION MECHANISMS 99

there is a special form which can occur only at top level, or recursively nested within
itself, named collection. It takes the form:

* %* (collection &rest forms)

The forms are treated exactly as if they themselves had occured at toplevel of the
source file (and hence they too can include a collection).

7.2 Units

A special restricted form of macro that is easy to define is used to declare units of
measurement for any constant. This is necessary because in most implementations
of the behavior language/subsumption architecture, numerical quantities (apart from
time periods) are restricted to be 8 bit signed integers-i.e., they range from -128
to 127 inclusive.

The general form is:

*** (def unit unitname (arg) form)

The idea is that the form provides a mapping from quantities in the named units
into the range [-128,127]. For instance representing degrees ranging from [-360,360]
in the range [-120,120), we could define:

(defunit degrees (x) (round x 3))

Then we could refer in behavior code to quantities like (degrees 270) which
would translate into 90, small enough to fit into 8 bit registers.

8 Activation Mechanisms

Behaviors can have two states; an active state and an inactive state. The rules
that make up a behavior can actually be segmented into three classes that operate
differently depending on the state of the behavior. The classes are specified using
additional keywords. The rule specification keywords for behaviors are:

:processes These rules always operate as specified earlier.

8 ACTIVATION MECHANISMS 23

:h-processes These haltable processes cannot run at all when the behavior is in its
inactive state. It is as if every whenever condition has an additional term that
is not satisfied.3

i-processes These inhibitible processes always run, but all outputs are inhibited
while the behavior iS inactive.

There is a monostable called active-p which is available to any rule. The
active-p monostable says whether the behavior is active or not. Of course, it makes
no sense to access this monostable from a haltable rule, since whenever a haltable
rule is running it must be the case that active-p is triggered.

8.1 Activation

There are four keyword slots to defbehavior concernei with describing when a be-
havior is active. These are:

:precondition This is an aribtrary expression which should return true or talse.
When it is true it triggers a user visible monostable preconitinn-p with a
period of twice the characteristic time. This monostable must be activated
before a behavior can be activated, as below. This slot is optional and can be
omitted. In that case it is as though the precondition is always true.

:activation This is an arithmetic expression which is evaluated at a frequency de-
termined by the characteristic time of the implementation. Typically it is eval-
uated at 25Hz. The expresbion in this slot can refer to any register within the
behavior. Other possibilities are described in subsequent subsections. The eval-
uation of the expression results in a number in the range [-128,127]. This is
user visible as the contents of the pseudo register activation-level.

:threshold This is a number in the range [-'28,127] which is ce npared to the
computed activation level of the behavior. If that activation level is greater
than or equal to the threshold and, when a :precondition was satisfied, if
the precondition-p monostable is active, then the active-p monostable is
triggered. The behavior is active if and only if the active-p monostable is on.

3 And indeed that is how it is implemented!

8 ACTIVATION MEChANISAIS 24

:continuance By having a monostable in addition to the regular comparison with
the threshold, some hysterisis and stability is built into the system. This slot
specifies the time period of the monostable. If the slot is omitted the time
period defaults to 2.0 seconds.

8.2 The Hormone System

The hormone system is a crude form of a behavior activation mechanism.
The-e are two types of non-procedural entities:

condition These are named excitation quantities which decay over time (see below)
but which can be excited by any process which chooses to excite them. A
condition's value ranges from 0 to 15, although there is no explicit way for this
value to be examined.

releaser These are functions of the conditions. Releaser values are kept up to date
by background processes, with a time .ag of no more than the characteristic
time of the implementation.

Together, conditions and releasers form a low bandwidth global communication
mechanism.

A coarse analogy is that conditions are emotions and releasers are hormones.
The forms for defining conditions and releasers are def condition and def releaser.

Their general forms are:

* (def condition name &kin ...)

* (defreleaser name &key ...)

In both cases, name is a symbolic name for the quantity. Both forms take a
number of optional keywords listed below.

For conditions, there is an initial value declared (see below). That value can be
increased at any time (up to the maximum value of 15) with the excite primitive
which takes the form:

* (excite condition-name &optional (amount 1))

8 ACTIVATION MECHANISMS 25

excite can be used in the body of any real-time rule in the whole system. There
is no lexicographic requirement. The named condition is incremented by the desired
amount (defaulting to 1).

The value of each condition decays over time. The decay rate can be determined
by the user. It defaults to a linear rate of one unit every 12 seconds, but it can be
changed, and also made hi-linear. The decay mechanism is quite general, but the
underlying assumption in the syntax for specifying it, is that in the bi-linear , ;i.e
there is a region of hyper-activation where the decay rate is lower.

The keywords for defcondition, along with their default values are:

init 0 The initial value for the condition.

decay-period 12 The number of seconds between a reduction of one unit of the
condition level.

hyper-level nil If this is non-nil then at this level or above, a slower rate of decay
is used.

hyperize 24 The number of seconds between an increase of one unit of the condition
level when in the hyper active region.

There is only one keyword for def releaser.

generation 0 An expression on constants and previously declared conditions. This
expression gets evaluated at a rate determined by the characteristic time of the
implementation in order to keep the releaser up to date.

Any releaser can be referred to in the :activation slot of a behavior. In this
way, the hormone system can activate selected behaviors.

8.3 Spreading of Activation

Besides hormones, there is a direct method for spreading of activation between be-
haviors. The current direct method has some drawbacks and will be modified in the
future after experience is gained with it. The direct method will also be modified to
allow the implementation of certain ideas in learning.

The principal idea behind activation (from [Maes 89]) is that any behavior can
spread some portion of its activation to other behaviors. This spreading is modelled

9 ARRAYS 26

as a continuous process (although it is implemented discretely). Spreading activation
does not diminish the current activation level of a behavior.

As before, the activation level of a behavior is specified by the expression in the
:activation slot. Besides registers and releasers the expression can also refer to the
virtual register received-activation. The contents of the received-activation
register is determined by activation messages (ideally thought of as continuous values
on wires, although it is possible to abuse this model) from other behaviors. There is
a primitive named direct-activate. It takes the form:

*** (direct-activate behavior-name portion)

Here, behavior-name is the name of some other behavior. The result of evaluating
this form is to add some activation to the received-activation register of that
other behavior. The amount received is the sending behavior's activation multiplied
by the portion. The portion must be a rational number with a denominator which is
a power of two (since some of our target machines have no divide instruction!).

The received-activation virtual register, by default, has values in the range
[0, 63] where overflow and underflow are banged against these limits. This range can
be altered with the : received-activation-range keyword argument to def behavior.
It should look like a list of the low value and high value. The range must include 0.

Although spreading of activation should be thought of as a continous thing it is
implemented discretely by having received-activation be an :additive register.
Every time the :activation expression is evaluated (at the characteristic frequency
of the implementation) this register is effectively reset to 0. Thus the correct way to
use direct-activate is to run it at the characteristic frequency, most typically as a
whenever t rule.

9 Arrays

An array is a one dimensional vector of registers, each of which acts like an individ-
ual register-e.g., a message arriving at an array element can be used to trigger a
whenever rule, things can be stored in the array, and elements can be read and used.
Note that an array can be an input to a behavior-in effect a vector of inputs. An
array can also be a one dimensional vector of outputs.

Like registers, all arrays are statically allocated at compile time. For arrays this

9 ARRAYS 27

means that their size must be declared as a constant. An array is declared in the
:decls slot. An array declaration has two possible forms; one without element initial-
ization and one with all elements being initialized to the same constant. The forms
of these declarations are:

" (name :array size) which declares an array called name to have the constant
size number of elements.

" (name : array size : ait value) which additionally declares that all elements
of the array have initial value value.

A declared array can also be listed as in input or as an output.
The primitive for accessing components of an array is aref.

*** (aref arrayname index)

Arrays are indexed with a zero base. An aref form can appear anywhere a regular
register or output portname can appear (assuming the array is declared appropri-
ately). In particular it can be a location to which a setf refers.

When an aref is used in a connect statement as either an input portname or an

output portname the value of the index must be computable at compile time. Thus,
there cannot be any parameterized wires joining behaviors.

When an aref is used as the destination of an output statement the value of the
index must also be computable at compile time. Thus, there cannot be any output
redirected dynamically 4

An aref form can appear in a received? test condition of a whenever clause even
when the index is not computable at compile time. Thus, input can be redirected
dynamically. Note, however, that unlike regular registers, arrays that are inputs are
not duplicated over multiple rules, so that there is only one chance to poll the flag
that says the message has actually arrived.

;; we use come-from registers rather than goto registers because

;;; an output must be to a known location at compile time. but we

;;; can use simple indexing to select from a behavior's input registers.
;;;

4 The implementation reason for this is that it would require making the various suppressed and
inhibited wire trees connected to a particular output be callable as a subroutine. The original BL
implementation was not set up in a way which makes this easy.

9 ARRAYS 28

;;; the following switch handles 8 inputs and 8 outputs. each output
;;; can have at most one input, and only the first attempt at checking

;;; an input will notice a message had arrived.

;;; to request a switch setting, send an input index to inpsel, an output

;;; index to outsel, and a 1 to each of inp-count and out-count. the

;;; latter two are for collision detection. Ghe status output tells whether
;;; there was a collision or not and does nothing if there was. after

;;; a switch has been set, all messages get routed appropriately.

(defconstant $swith-success 1)

(defconstant $switch-failure 0)

(defmacro passon (index)
'(whenever (received? (aref a (aref b-i ,index)))

(output (aref b ,index) (aref a (aref b-i ,index)))))

(defbehavior switch8

:inputs (a inpsel inp-count outsel out-count)
:outputs (b status)

:decls ((b-i :array 8 :init 0)

(a :array 8)

(b :array 8)

(inp-count :additive (0 63) :init 0)

(out-count :additive (0 63) :init 0))

:processes ((whenever (and (received? inpsel)

(received? outsel))

(cond ((and (= inp-count 1)

(= out-count))

(setf (aref b-i outsel) inpsel)

(output status $switch-success))

(t (output status $switch-failure)))

(setf inp-count 0)

(setf out-count 0))

(passon 0)
(passon 1)

10 CONNECTING TO THE OUTSIDE 29

(passon 2)
(passon 3)

(passon 4)
(passon 5)

(passon 6)
(passon 7)))

;;; now for a silly behavior to demonstrate how connections are made

(defbehavior foo
:inputs (baz)

:outputs (bar)
:processes ((whenever (received? baz) (output bar baz))))

(connect (foo bar) (switch8 (aref a 3)))

(connect (switch8 (aref b 5)) (foo baz))

10 Connecting To The Outside

The behavior language is only useful if it can do something in the world. In this
section we discuss how to make the actual conenctions to the world.

10.1 Simulation Using Common Lisp

A simple way to make connections to the world is to use a simulation of it. This
can be most easily done in the behavior language by setting the current machine to
clsims.

The behavior language compiles subsequent input files into Common Lisp source
code in files with an extension of .clisp. This file can be compiled (by the Com-
mon Lisp compiler) and loaded. Then to run the behavior program use the form
(scheduler).

Any lisp procedure can be called by a behavior language program, but all free
variables will be treated as register names.

5 if the CL simulator is not already loaded, you can use the form (load-clsim) to get it in.

10 CONNECTING TO THE OUTSIDE 30

*** (lisp form)
This treats form as vanilla lisp and does not try to look through it for references to

registers. Instead this piece of lisp code will be compiled and called directly at the
appropriat, place.

10.2 Reserving storage

For backends that produce code that ruu directly on other machines it is sometimes
necessary to allocate storage which is not behavior language registers. This can be
done with:

*** (defdata label size)

which allocates size bytes of data and gives a symbolic label to the zeroth one. This
label may be referred to inside primitive operators (see below) or with the two forms:

* (examine 'label)

*** (deposit 'label value)

These take a quoted label and either examine its contents or set its contents. In
reality these two operations are implemented as primitve operators (see below).

10.3 Initializing Other Processes

There is a way to escape to assembly language to make specific calls during initial-
ization. This is achieved through the form:

*** (initialize-forms &rest forms)

Each item in the list forms should be an assembly language instruction to be run
during initialization. Typically it will be a subroutine call to the operating system.

It is legal to have multiple initialize-forms spread throughout a behavior lan-
guage program. They are collected together automatically sequentially in the order
of detection.

10 CONNECTING TO THE OUTSIDE 31

10.4 Primops

Primops are code templates for procedures called within behavior language programs.
When a user wants to extend the interface between the behavior language and the
underlying hardware the typical thing would be to write a new primop. The primops
should be compiled and loaded in the lisp environment in which the behavior compiler
runs. In clsim all lisp procedures are treated as primops, so there is no need for this
section in that case.

A primop has the form:

*** (defprim name &io-p args extra result isrep code opt coil)

The idea is that this provides a procedure at compile time which, when given some
operands specifying the location of arguments, will generate appropriate code, and
also return an operand describing where the result of the procedure can be found.
Note that these operands are machine operands that machine instructions can refer
to.

name The name of the procedure--it can be called by this name from within the
behavior language.

io-p A flag (nil or t) which says (in the latter case) that this is an I/O procedure.
Such procedures can only be invoked from interfaces and not from regular be-
haviors.

args A list of argument specifications, giving the operands symbolic names, and
placing any restrictions on legal classes of operands. It is up to the compiler to
find a way to deliver the arguments in operands of the appropriate classes. Each
element of this list is a list of two things; an argument name, and an operand
class.

extra A list of extra operands that this primop would like to be able to use (e.g., some
extra registers). This list takes the same format as the argument specifications.

isrep This is either value or branch. The former says that this procedure returns an
actual value, the latter says that it sets a condition code which can be branched
on.

10 CONNECTING TO THE OUTSIDE 32

result In the case of an isrep of value, this is an operand describing where the
result of the procedure will show up. Note that this is an expression which gets
evaluated. It can be a backquoted form, for example. Any named locations in
the args and extra slots can be used as free variables in this form. In the case
of isrep of branch then this is a condition name (e.g., eq, ge, etc.,) which is
what to branch on in the true case.

code This is an expression which should evaluate to a list of instructions. Typically
it will be a backquote form which will make reference to the operands specified
in args and extra.

opt A form which can refer to the free variable form, which will be bound to the
expression calling the named procedure. If this form returns a different form
that the original source at compile time, then that new source is used instead.
This is used for example, to turn addition of many arguments into a series of
additions of two arguments.

coll When specified this should be a procedure (e.g, #'*) which when applied to all
literal arguments gives the result that the procedure being defined would have
given at runtime. This is used by the compiler to eliminate procedure calls with
all literal arguments.

The operand classes are machine dependent. On the 68000 the legal classes are
dreg, meaning a data register, and any meaning an operand. On the 6301 and 6811
the legal classes are !accum-a meaning the A accumulator and anyna meaning any
non-accumulator operand (i.e., constant or memory). In both cases arguments can
also declared to be literal which means that at compile time the value must be
able to be determined, and that will be what the argument name is bound to, when
evaluating the code slot.

Consider the following examples from the 6301:

(defprim oddp
:io-p ()
:args ((x !accum-a))
:result ne

:isrep branch
:coli #'oddp

10 CONNECTING TO THE OUTSIDE .33

:code '((anda (1))))

(defprim max
:io-p 0
:args ((x anyna) (y !accum-a))

:result y

:isrep value
:code (let ((endlabel (gentemp "MAX")))

'((cmpa ,x)

((branch ge) ,endlabel)

(ldaa ,x)

,endlabel))

:coll #'max

:opt (dyadicize-form form))

(defprim examine

:io-p t

:args ((p literal))
:extra ((x !accum-a))
:result x

:isrep value

:code '((ldaa ,p)))

The oddp example is a non-value producing primop. It sets condition codes, and a
subsequent branch operation will be affected by that condition code. In the example,
the argument comes in the A accumulator, which is anded with 1. If the result is
non-zero that means the argument must have been odd, so checking for the condition
ne ensures that the branch will be taken on the true case. The compiler is free to
optimize this and may decide to check for the negation of the condition, i.e., eq and
branch on falseness of odd.

The second example, max, must build a more complex piece of code with an branch
and labels.

The third example illustrates the use of a literal argument, in this case it is an
assembler label, possibly reserved with defdata.

11 SUMMARY OF ALLOWED TOP LEVEL FORMS :34

11 Summary of Allowed Top Level Forms

The legal toplevel forms in a behavior source file are:

9 defconst ant

e defmacro

e defmachine

* def interface

* defbehavior

e defunit

* defcondit ion

* defreleaser

e connect

9 whenever

e exlusive

e collection

e defdata

9 initialize-forms

* A macro defined in the current compilation context using defmacro

12 Acknowledgements

Pattie Maes provided much input and influence over the design of the activation
spreading mechanism. She and Maja Mataric have been the primary guinea pigs

subjected to use of the behavior language. Pattie and Anita Flynn had many useful
comments on earlier drafts of this document.

13 REFERENCES 35

13 References

[Brooks 86] "A Robust Layered Control System for a Mobile Robot", Rodney A.
Brooks, IEEE Journal of Robotics and Automation, RA-2, April, 14-23.

[Brooks 89] "A Robot that Walks: Emergent Behavior from a Carefully Evolved
Network", Rodney A. Brooks, Neural Computation 1:2, Summer.

[Connell 89] "A Colony Architecture for an Artificial Creature", Jonathan H. Con-
nell, MIT Ph.D. Thesis in Electrical Engineering and Computer Science, June.

[Maes 89] "The Dynamics of Action Selection", Pattie Maes, AAAI Spring Sympo-
sium on Al Limited Rationality, IJCAI, Detroit, MI, 991-997.

